Machine learning

An integrated network of Arabidopsis growth regulators and its use for gene prioritization

Elucidating the molecular mechanisms that govern plant growth has been an important topic in plant research, and current advances in large-scale data generation call for computational tools that efficiently combine these different data sources to generate novel hypotheses. In this work, we present a novel, integrated network that combines multiple large-scale data sources to characterize growth regulatory genes in Arabidopsis, one of the main plant model organisms.

Nokoi: A Decoy-Free Approach to the Identification of Peptides

A growing number of proteogenomics and metaproteomics studies indicate potential limitations of the application of the “decoy” database paradigm used to separate correct peptide identifications from incorrect ones in traditional shotgun proteomics. We therefore propose a binary classifier called Nokoi that allows fast yet reliable decoy-free separation of correct from incorrect peptide-to-spectrum matches (PSMs). Nokoi was trained on a very large collection of heterogeneous data using ranks supplied by the Mascot search engine to label correct and incorrect PSMs.


Subscribe to RSS - Machine learning